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ABSTRACT

Fatigue is a primary consideration in the design of aerospace structures for long term durability
and reliability. There are several types of fatigue that must be considered in the design. These
include low cycle, high cycle, combined for different cyclic loading conditions — for example,
mechanical, thermal, erosion, etc.

The traditional approach to evaluate fatigue has been to conduct many tests in the various
service-environment conditions that the component will be subjected to in a specific design.
This approach is reasonable and robust for that specific design. However, it is time consuming,
costly and needs to be repeated for designs in different operating conditions in general.

Recent research has demonstrated that fatigue of structural components/structures can be
evaluated by computational simulation based on a novel paradigm. Main features in this novel
paradigm are progressive telescoping scale mechanics, progressive scale substructuring and
progressive structural fracture, encompassed with probabilistic simulation. These generic
features of this approach are to probabilistically telescope scale local material point damage all
the way up to the structural component and to probabilistically scale decompose structural loads
and boundary conditions all the way down to material point. Additional features include a multi-
factor interaction model that probabilistically describes material properties evolution, any
changes due to various cyclic load and other mutually interacting effects. The objective of the
proposed paper is to describe this novel paradigm of computational simulation and present
typical fatigue results for structural components. Additionally, advantages, versatility and
inclusiveness of computational simulation versus testing are discussed. Guidelines for
complementing simulated results with strategic testing are outlined. Typical results are shown
for computational simulation of fatigue in metallic composite structures to demonstrate the
versatility of this novel paradigm in predicting a priori fatigue life.
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BACKGROUND:

Fatigue 1s 2 primaey consideration in the design of aerospace structures
for long-term durability and reliability.

There are several types of Tatigue that must be considered in the design,
such as: low eyele, high cvole, combined for ditforent cvelic loading
comhidons = for example, mechanical, thermal, croston, eie.

The traditional approach to evaluate fatipue has been o conduct many
tests in the various servico-envirmnment conditions that the component
will be subjected to 1 g specific design,

This approach 18 reasomable and robust for that specilic design,

However, i 1 time consuming, costly and needs o be repeated for
designs in different operating conditions i genendd
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NEED:

& There Is g continuing need to develop @ method to reduce cost in
long-hife fatizue evaluations,

<

* HRecent research bas demowtrated that fatigue of structural components/
siructures var be evaluated by eomputational stmulation based on a

novel paradigm,
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OBJECTIVE:

» Describe the novel pavadigm and prosont struchural component results that
ithstrate versatility, inclosivencss and that - YES IT CAN BE DONg
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APPROACH:

MAIN FEATURES IN THIS NEW PARADIGM ARE:
& Progressive Structueal Fractum
s MEIM for Matenal Behavior

= Telescopie Seale Mechanics
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inistic/Non-Traditional (ND/NT) Methods for
Design to Cost in the Presence of Uncertainties

{Simulation Herative Cycle

B

§

vy

SN

Geitiogn




CS9T1C-200T—dD/VSVN

wy

TYPICAL RESULTS:

%

%

%

%

MPIM - Behavior Hlusteation
Blade Thermomechanical Fatigue
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PROBABLITY OF COMPONENT DAMAGE PROPAGATION PATH

CAUSED BY 100,000 FATIGUE CYCLES
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STRAIN ENERGY INCREASES AS THE DAMAGE PROGRESSES
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Rotor System Survival Probability Under
Muitiple Failure Modes
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Sensitivity Factors of Rotor System

Failure Probability

Name I ufl) Space
E_ROT 0.016011
E_RIN -0.002608
ROTOR DENS 0.438489
RING DENS 0.000386
SPEED 0.850827
TEMPE 0.170793
BURST 0.011983
RINGY 0.073086
RK1C -0.061872
AD 0.057976
C 0133702
NI -0.000008
Kt 0.060917
A_LCF -0.005132
TOLER 0.0
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STRUCTURAL 8YSTEM RELIABILITY CONSIDERING
PHOGHESSIVE FRACTURE EXAMPLE

Crack Growth: Bottom Events Modeled through Node Unzipping. Each
Bottom Event Corresponds to Crack lnitiation or a Crack Growth Increment

s
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Fatigue Calculations
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National Wind Tunnel Details:

«  Dimensions:
-~  Length =133 It
- Diameter at wide angle diffuser end = 51.67 {t
- Hameter at annular diffuser end = 41258 ft

s Material A516 Grade 70 steel

«  Load: Internal pressure = 5 atm {(73.0 psi)
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SUMMARY:
» Probabilistic fatigue by compuiiational simudation iy double and can be
adapted theoughaut the desipn practive.

& (e way to enhance s implergentation iy toadentify appropriate staft
armd task thom o doa

= The methad constitutes a “vinual” statigtical desk-top laboratory
applicable at all siapes of the design, developinent and servivoe e ovele

& Probabilistic fatipue evaluations rely on computational simulstion results
whitle statistic methods rely ou esperimental dla
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WHAT IS THE FUTURE OF PROBABILISTIC
FATIGUE METHODS?

¢ The future 15 an exponential use of Probabilistic Fattzue Methods because
the drive for Better-Uheaper-Faster engines necessitates quantifivation of
risk fur the ubilization of unproven:

- esign Concepts
w Matenial
o B

w Bl

& Probobilistic Fattgue Simulation s the mod effective formal method 1o
guantly risk and justily comamitment of required rescurces.
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Multi-Factor Interaction Model for
Material Behavior Space (MBS)
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